SnO2 Nanowires on Carbon Nanotube Film as a High Performance Anode Material for Flexible Li-ion Batteries

نویسندگان

  • Amin Abnavi Nano-fabricated Energy Devices Lab, Department of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
  • Mojtaba Faramarzi Nano-fabricated Energy Devices Lab, Department of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
  • Shahnaz Ghasemi Institute of Water and Energy, Sharif University of Technology, Tehran, Iran
  • Zeinab Sanaee Nano-fabricated Energy Devices Lab, Department of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
چکیده مقاله:

Today, Li-ion batteries (LIBs) are the most common rechargeable batteries used in electronic devices. SnO2 with theoretical specific capacity of 782 mAh/g is among the best anode materials for LIBs. In this report, Three-dimensional SnO2 nanowires (NWs) on carbon nanotube (CNT) thin film (SnO2 / CNT) is fabricated using a combination of vacuum filtration and thermal evaporation techniques. The resulting 3D heterostructure SnO2/CNT was characterized by X-ray diffraction, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). This fabricated SnO2/CNT electrode has been tested as a flexible and binder-free anode for LIB, which exhibits high initial discharge/charge capacity of 4.8/2.25 mAh/cm2 at a current density of 0.25 A/g, much larger than discharge/charge capacity of bare CNT film (2.2/0.3 mAh/cm2). Relatively high areal capacity of 1.23 mAh/cm2 has been achieved for the fabricated LIB with SnO2/CNT electrode after 20 cycles, proposing this material as a high performance flexible LIB anode material.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irradiation Si on carbon nanotube paper as a flexible anode material for lithium-ion batteries

Silicon single walled carbon nanotube composite paper was modified by low energy ion implantation using 5i to obtain a flexible composite paper. Raman and FE-SEM results show that structure of SWCNT could be destroyed by the implantation. Electrochemical measurements display that the implanted SI can improve the specific capacity and the reversible capacity of CNT paper. After 50 cycles, the sp...

متن کامل

Coaxial MoS₂@Carbon Hybrid Fibers: A Low-Cost Anode Material for High-Performance Li-Ion Batteries.

A low-cost bio-mass-derived carbon substrate has been employed to synthesize MoS₂@carbon composites through a hydrothermal method. Carbon fibers derived from natural cotton provide a three-dimensional and open framework for the uniform growth of MoS₂ nanosheets, thus hierarchically constructing coaxial architecture. The unique structure could synergistically benefit fast Li-ion and electron tra...

متن کامل

Coaxial MoS2@Carbon Hybrid Fibers: A Low-Cost Anode Material for High-Performance Li-Ion Batteries

A low-cost bio-mass-derived carbon substrate has been employed to synthesize MoS2@carbon composites through a hydrothermal method. Carbon fibers derived from natural cotton provide a three-dimensional and open framework for the uniform growth of MoS2 nanosheets, thus hierarchically constructing coaxial architecture. The unique structure could synergistically benefit fast Li-ion and electron tra...

متن کامل

A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material

In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C  synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...

متن کامل

Synthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries

In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 3

صفحات  288- 293

تاریخ انتشار 2018-07-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023